Correlation-Based Deblurring Leveraging Multispectral Chromatic Aberration in Color and Near-Infrared Joint Acquisition

Majed El Helou, Zahra Sadeghipoor, Sabine Süsstrunk

Presented by Majed El Helou

ICIP 2017

NIR and its acquisition

Some applications

- Haze detection and removal
- Shadow detection
- Skin smoothing
- Material-based segmentation
- Vegetation detection
- Face authentication

Chromatic aberration (longitudinal)

Different wave bands converge at different focal points!

Only one is captured in focus*

Chromatic aberration in color and NIR [1]

[1] Z. Sadeghipoor, Y. M Lu, E. Mendez, and S. Süsstrunk, "Multiscale guided deblurring: Chromatic aberration correction in color and near-infrared imaging," in 23rd European Signal Processing Conference (EUSIPCO), 2015, pp. 2336–2340.

Borrowing from spectral neighbors

Main idea:

 $\nabla N \approx \nabla Color$

Solution:

where is a Gaussian kernel

 $N_{blur}\;$ original NIR $N_{deblur}\;$ deblurred NIR

$$\mathbf{V}_{deblur} = argmin_N ||N_{blur} - k * N||_2^2 + ||\nabla N - \nabla Y||_2^2$$

where Y is the pixel-wise color average

uniform blur

Shortcoming and solution

Color

NIR

Color and NIR similarity:
$$M = 1 - \frac{|\nabla N - \nabla (k * Y)|}{|\nabla N + \nabla (k * Y)|}$$

Similarity maps incorporated:

$$N_{deblur} = argmin_N \lambda ||N_{blur} - k * N||_2^2 + ||\nabla N - \mathbf{M} \odot \nabla Y||_2^2$$

Full deblurring algorithm

Limitations: uniform blur assumption

Original NIR image

NIR image after deblurring

Limitations: color average as guide

Average sharpness values of different channels.

	R	G	В	Y
sharp.	0.6235	0.5942	0.6196	0.5114

Loss in hyperspectral information

Searching for all information

Spectral correlation

	NIR	R	G	В
NIR	1	0.8436	0.7938	0.6975
R	-	1	0.9215	0.8510
G	_	_	1	0.9310
В	-	-	-	1

Spectrally closer higher average NCC Spectral correlation seen spatially

Top row: NCC between NIR and Blue Bottom row: NCC between NIR and Red

Searching for all information

Spatial correlation

Luminance

NCC

High-frequency correlation

Searching for all information

...but spatial distribution of high-frequency is affected by object reflectance & chromatic aberration

Green

Gradient difference

An example of spectral correlations

NIR deblurred from R channel

NIR deblurred from Y channel

An example of spectral correlations

NIR deblurred from R channel

NIR deblurred from Y channel

An example of spectral correlations

NIR deblurred from R channel

NIR deblurred from Y channel

Objective

Leverage spectral-spatial correlations, making use of the best information for deblurring

Objective

Leverage spectral-spatial correlations, making use of the best information for deblurring

Constraint: no *apriori* knowledge on what spectral information is the most relevant for every spatial location

Combine advantages of each channel

Sharpness assessment [2]

[2] F. Crete, et al. "The blur effect: perception and estimation with a new no-reference perceptual blur metric." *International Society for Optics and Photonics*, 2007.

Deblurring results

State of the art [1]:

Ours:

Deblurring results

State of the art [1]:

Ours:

Recombining from RGB

Simpler is better: any band combination loses high frequency

Conclusion

48.8% increase in sharpness (Crete)

Conclusion

48.8% increase in sharpness (Crete)

Increased depth of field

Conclusion

48.8% increase in sharpness (Crete)

Increased depth of field

Due to chromatic aberration and reflectance properties, spectral averaging causes a spatial low-pass filtering Thank you for your attention

Code, explanations, datasets, papers: ivrl.epfl.ch majedelhelou.github.io

