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Introduction

• Deep neural networks achieve increasingly-better results on a wide 
range of tasks.

• As the capacity of deeper networks increases, so does their potential 
to memorize1.

• In turn, increased memorization is detrimental to network 
performance and generalization.

1 D. Arpit, S. Jastrzebski, N. Ballas, D. Krueger, E. Bengio, M. S. Kanwal, T. Maharaj, A. Fischer, A. Courville, Y. 
Bengio, et al., “A closer look at memorization in deep networks,” in ICML, 2017, pp. 233–242.



Motivation

• Larger, varied training sets can improve generalization, but increase 
training time and are expensive and time-consuming to collect.

• Neural network regularization is a valuable alternative that remains 
an open problem1,2.

• In this work, we address neural network regularization.

1 M. Blot, T. Robert, N. Thome, and M. Cord, “Shade:  Information-based regularization for deep learning,” in 
ICIP, 2018, pp. 813–817.
2 X. Li, S. Chen, X. Hu, and J. Yang, “Understanding the disharmony between dropout and batch normalization 
by variance shift,” in CVPR, 2019, pp. 2682–2690.



Background: Regularization

• Regularization methods are commonly used to reduce network overfitting:
1. Batch Normalization (BN): attempts to stabilize the output of one layer 

to aid the learning of the following one 
2. Dropout (DO): attempts to increase robustness by forcing random signal 

ablations during training
3. Weight Decay (WD): reduces network complexity by penalizing the norm 

of some or all optimization weights

• It is recently shown that BN and DO actually have opposite effects on feature 
variance between training and inference1.

1 X. Li, S. Chen, X. Hu, and J. Yang, “Understanding the disharmony between dropout and 
batch normalization by variance shift,” in CVPR, 2019, pp. 2682–2690.



Background: Generalization

• Generalization in neural networks remains an open question1.

• To assess the quality of feature representations learned by a network, 
we evaluate memorization. 

• This is achieved by training with a portion of randomized class labels, 
which can only be predicted/learned by memorization 2.

1 B. Neyshabur, Z. Li, S. Bhojanapalli, Y. LeCun, and N. Srebro, “Towards understanding the role of over-
parametrization in generalization of neural networks,” in ICLR, 2019.
2 C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding deep learning requires rethinking 
generalization,” in ICLR, 2017.



Proposed Method: AL2

• The network architecture is separated into a trunk 𝜙𝜙 for feature 
learning followed by a head 𝜓𝜓 for classification:
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Proposed Method: AL2 Cont’d

• The final mini-batch loss is given by:

• And the activation loss is given a progressively increasing weight, 
based on recent findings1,2 in network learning:

• We begin with a value of 0.01 for the weight, and the sequence 𝜆𝜆 is 
the same for all our experiments.
1 B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang, and M. Sugiyama,   “Co-teaching:  Robust 
training of deep neural networks with extremely noisy labels,” in NeurIPS, 2018, pp.8527–8537.
2 D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,” in CVPR, 2018, pp. 9446–9454.

AL2



Experimental Results

• Test accuracy (TA), training cross-entropy loss (Lc), and our regularization 
loss (Lr) (shown for AL2 multiplied by 100 for readability), on the MNIST 
dataset with 75% corrupt labels. 

• We note the counter-intuitive effect of WD on activation values.



Feature Representation Analysis

• We analyze the evolution of feature representations with canonical 
correlation, which is based on the coefficients:

(where R1 and R2 hold feature activations per neuron and data sample)

• SVCCA1 computes a weighted average of these coefficients, to assess 
the difference between two feature representations.

• To not lose any information, we visualize the entire sequences.
1 M. Raghu, J. Gilmer, J. Yosinski, and J. Sohl-Dickstein, “SVCCA: Singular vector canonical correlation 
analysis for deep learning dynamics and interpretability,” in NeurIPS, 2017, pp. 6076–6085.



Feature Representation Analysis Cont’d

• The baseline here is the network with DO.
• By analyzing the evolution in feature space across epochs, we see that AL2 significantly 

modifies the learning and the final learned representations.



Cumulative Ablations Analysis

• We further test the different networks by evaluating their average 
performance as we ablate increasing percentages of their feature 
activations during inference1.

1 A. S. Morcos, D. G. Barrett, N. C. Rabinowitz, and M. Botvinick, “On the importance of single directions 
for generalization,” in ICLR, 2018.



Conclusion

• We propose a novel progressive activation loss (AL2) to regularize 
neural networks. 

• We use canonical correlation analysis to show the significant effect of 
AL2 on the learned feature representation. 

• All results show that better performance can be obtained by 
combining standard regularization methods.



Thank you
https://github.com/majedelhelou/AL2
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